Michel Medema

PhD Student

Research

  • Discrete Optimisation Problems
  • Distributed Systems
  • Big Data
Michel Medema

Publications

  1. Medema, M., & Lazovik, A. (2025). A safeness condition for minimal separators based on vertex connectivity. Discrete Mathematics, 348(9). https://doi.org/10.1016/j.disc.2025.114524
  2. Medema, M., Breeman, L., & Lazovik, A. (2024). Limiting the memory consumption of caching for detecting subproblem dominance in constraint problems. Constraints, 29, 152–191. https://doi.org/10.1007/s10601-024-09374-7
  3. Medema, M., & Lazovik, A. (2022). Correlating the Community Structure of Constraint Satisfaction Problems with Search Time. International Journal on Artificial Intelligence Tools, 31(7). https://doi.org/10.1142/S0218213022600041
  4. Medema, M., Kaldeli, E., & Lazovik, A. (2021). Automated Service Composition Using AI Planning and Beyond. In M. Aiello, A. Bouguettaya, D. A. Tamburri, & W.-J. van den Heuvel (Eds.), Next-Gen Digital Services. A Retrospective and Roadmap for Service Computing of the Future: Essays Dedicated to Michael Papazoglou on the Occasion of His 65th Birthday and His Retirement (pp. 16–32). Springer. https://doi.org/10.1007/978-3-030-73203-5_2
  5. Al-Saudi, K., Degeler, V., & Medema, M. (2021). Energy Consumption Patterns and Load Forecasting with Profiled CNN-LSTM Networks. Processes, 9(11). https://doi.org/10.3390/pr9111870
  6. Li, X., Zhang, Z., Wu, D., Medema, M., & Lazovik, A. (2021). A multi-robot allocation model for multi-object based on Global Optimal Evaluation of Revenue. International Journal of Advanced Robotic Systems, 18(6). https://doi.org/10.1177/17298814211060650
  7. Medema, M., & Lazovik, A. (2020). The Community Structure of Constraint Satisfaction Problems and Its Correlation with Search Time. 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 153–160. https://doi.org/10.1109/ICTAI50040.2020.00034
  8. Lazovik, E., Medema, M., Albers, T., Langius, E., & Lazovik, A. (2017). Runtime Modifications of Spark Data Processing Pipelines. International Conference on Cloud and Autonomic Computing (ICCAC), 34–45. https://doi.org/10.1109/ICCAC.2017.11