Student Colloquia

Centrality-Aware Learning vs Graph Neural Networks for State Estimation in Wastewater Systems

Supervisors: Revin Naufal Alief, Dilek Düştegör
Date: 2026-01-05
Type: bachelor-project/student-colloquium/master-internship/master-project
Description:

Wastewater systems can naturally be represented as graphs, where nodal pressure dynamics depend on both hydraulic conditions and network topology. Recent studies have demonstrated that standard deep learning models, such as multilayer perceptrons and convolutional neural networks, can achieve high pressure prediction accuracy when augmented with node centrality metrics (e.g., degree, betweenness, and closeness). These metrics implicitly encode structural information without explicitly modeling graph connectivity. However, despite promising results, such approaches have not yet been systematically compared with Graph Neural Networks (GNNs), which explicitly learn relational dependencies and are considered the natural baseline for topology-aware learning in WDNs. In this project, the student will investigate the extent to which centrality-aware feature engineering can serve as an alternative to GNN-based models for pressure prediction in WDNs. The project will involve a comparative study of centrality-aware neural networks and GNN architectures applied to benchmark water distribution networks under varying demand patterns and operating conditions. The analysis will focus on prediction performance, robustness to topology variations, generalization across different networks, and computational complexity. The project scope will be adjusted according to the study level. Bachelor-level projects will focus on reproducing existing baselines and conducting a controlled comparison between centrality-aware models and a single GNN architecture. Master-level projects may extend the analysis to include cross-network transfer learning, partial observability scenarios, and ablation studies to identify which aspects of network topology are captured by centrality metrics versus explicit graph representations. The outcomes of this project aim to clarify the practical trade-offs between implicit and explicit topology encoding in machine learning models for water infrastructure systems.>
Reference: (Not exhaustive)
Centrality-Aware Machine Learning for Water Network Pressure Prediction.

A Systematic Review of Graph Neural Network Applications in Wastewater Systems

Supervisors: Revin Naufal Alief, Dilek Düştegör
Date: 2026-01-05
Type: bachelor-project/student-colloquium/master-internship/master-project
Description:

Graph Neural Networks (GNNs) have shown strong performance in graph-related data. If we are looking at the wastewater systems, they are able to be represented as network topology which is suitable for GNN to works on. Existing studies apply GNNs to a variety of tasks, including state estimation, forecasting, anomaly detection, and sensor placement. However, the literature remains scattered, and the overview of methods, datasets, and research gaps is still lacking. In this project, the student will conduct a systematic literature review of GNN-based approaches in wastewater systems following a structured review protocol (e.g., PRISMA). The student will identify, screen, and categorize relevant studies based on application domain, learning task, data sources (real vs synthetic), and evaluation settings. Special attention will be given to limitations related to sensor availability, uncertainty handling, and generalization across networks. The outcome of the project is a structured taxonomy and comparative analysis of existing GNN-based wastewater studies, highlighting open challenges and opportunities for future research, particularly in sensor placement and digital twin development. Project depth will be adjusted to BS or MS level. References:
Graph Neural Network Empowers Intelligent Education: A Systematic Review From an Application Perspective. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. A Comprehensive Survey on Graph Neural Networks.

Uncertainty Quantification in GNN-based Water Level Estimation

Supervisors: Revin Naufal Alief, Dilek Düştegör
Date: 2026-01-05
Type: bachelor-project/student-colloquium/master-internship/master-project
Description:

Graph Neural Networks (GNNs) have shown strong performance in estimating hydraulic states in partially observed wastewater networks. However, most existing approaches focus on point predictions and provide limited insight into prediction reliability, which is crucial for decision-making. In this project, the student will (1) do literature review on conformal prediction for graph-structured data, emphasizing the challenges of applying CP to graphs (e.g., exchangeability issues in node/edge settings and dependence in graph neighborhoods), and (2) implement a split conformal prediction pipeline on top of a pre-trained GNN for water level estimation in wastewater networks. Recent work such as Conformalized GNNs (CF-GNN) and conformal prediction sets for GNNs provide practical designs and evaluation protocols for graph settings. The student will evaluate uncertainty quality using empirical coverage and interval width across sensor-masking ratios and analyze how uncertainty varies across sparse sensor conditions. Project depth will be adjusted to BS or MS level.

References: Uncertainty Quantification over Graph with Conformalized Graph Neural Networks. Non-exchangeable Conformal Prediction for Temporal Graph Neural Networks.

Sparse Sensor Placement for Graph-Based State Estimation

Supervisors: Revin Naufal Alief, Dilek Düştegör
Date: 2026-01-05
Type: bachelor-project/student-colloquium/master-internship/master-project
Description:

This project studies sparse sensor placement in large networked systems to support accurate state estimation using graph neural networks (GNNs). The focus is on identifying critical sensor locations using graph-theoretic properties and invariants, and evaluating their impact on learning-based estimation performance. Students will implement and compare sensor placement strategies and assess their effectiveness under limited sensing. Project depth will be adjusted to BS or MS level. Graph Neural Networks for Sensor Placement: A Proof of Concept towards a Digital Twin of Water Distribution Systems. INSPIRE-GNN: Intelligent Sensor Placement to Improve Sparse Bicycling Network Prediction via Reinforcement Learning Boosted Graph Neural Networks Graph Neural Networks for Evaluating the Reliability and Resilience of Infrastructure Systems: A Systematic Review of Models, Applications, and Future Directions

Wastewater Systems Benchmark Dataset Development

Supervisors: Revin Naufal Alief, Dilek Düştegör
Date: 2026-01-05
Type: bachelor-project/student-colloquium/master-internship/master-project
Description:

This project aims to develop an academic benchmark dataset for wastewater systems to support reproducible research. The work includes a literature review, followed by dataset creation through merging existing data or simulating diverse operating scenarios. A key outcome is a modular, automated data-generation pipeline with clear documentation, suitable for data-driven modeling and analysis tasks. Large-Scale Multipurpose Benchmark Datasets for Assessing Data-Driven Deep Learning Approaches for Water Distribution Networks Benchmarking dataset for leak detection and localization in water distribution systems LeakDB: A Benchmark Dataset for Leakage Diagnosis in Water Distribution Networks Benchmarking Dataset for Leak Detection and Localization in Water Distribution Systems

Conditional planning an overview of approaches

Supervisors: Heerko Groefsema
Date: 2025-02-05
Type: student-colloquium
Description:

Verifying the data perspective of business processes

Supervisors: Heerko Groefsema
Date: 2025-02-05
Type: student-colloquium
Description:

Explaining Graph Neural Networks

Supervisors: Andrés Tello
Date: 2025-02-01
Type: student-colloquium
Description:

Generalization in Graph Neural Networks

Supervisors: Andrés Tello
Date: 2025-02-01
Type: student-colloquium
Description:

Multimodality Graph Foundation Models

Supervisors: Huy Truong
Date: 2025-01-21
Type: student-colloquium
Description:

Test-Time Training

Supervisors: Huy Truong
Date: 2025-01-21
Type: student-colloquium
Description:

Cluster Scheduling for DLT workloads

Supervisors: Kawsar Haghshenas, Mahmoud Alasmar
Date: 2025-01-27
Type: student-colloquium
Description:

Estimating Deep Learning GPU Memory Consumption

Supervisors: Kawsar Haghshenas, Mahmoud Alasmar
Date: 2023-12-11
Type: student-colloquium
Description: